
Journal of Statistical Physics, Vol. 57, Nos. 3/4, 1989 

Long-Time Tails in Lattice Lorentz Gases 

M .  H.  Erns t  1 and G.  A.  van V e l z e n  ~ 

Received March 20, 1989 

We consider a Lorentz gas on a square lattice with a fraction c of scattering 
sites. The collision laws are deterministic (fixed mirror model) or stochastic 
(with transmission, reflection, and deflection probabilities 7, /~, and ~ respec- 
tively). If all mirrors are parallel, the mirror model is exactly solvable. For the 
general case a self-consistent ring kinetic equation is used to calculate the long- 
time tails of the velocity correlation function (v(0) v(t)) and the tensor correla- 
tion ( Q ( 0 ) Q ( t ) )  with Q=vxvy. Both functions show t 2 tails, as opposed to 
the continuous Lorentz gas, where the tails are respectively t 2 and t -3. Inclu- 
sion of the self-consistent ring collisions increases the low-density coefficient of 
the tail in (v (0)v( t ) )  by 30-100% as compared to the simple ring collisions, 
depending on the model parameters. 

KEY WORDS: Lorentz gas; cellular automaton fluids; diffusion; velocity 
correlation function; long-time tail. 

1. I N T R O D U C T I O N  

In this volume honoring E. G. D. Cohen we present a study of time 
correlation functions and diffusion in Lorentz gases, topics that have had 
Cohen's long-standing ~1) and recent ~2) interest. Here these problems are 
posed in the context of lattice gas cellular automata, which offer many 
surprising results. 

In these models time, positions, and velocities are discretized, and the 
dynamics is simple in the sense that only particles present in the same cell 
at time t determine velocities and positions at time t + 1. The fluid versions 
of such models are of great practical interest because they are used for 
large-scale simulations of hydrodynamic flow problems and they provide 
the basis for the current construction of many dedicated parallel corn-  
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puters. These lattice gases contain much, and hopefully most, of the essen- 
tial physics of fluids. They also have a more fundamental importance in the 
sense that they serve as a testing ground for kinetic theory, because the 
simple dynamics frequently allows a more complete and more detailed 
kinetic theory analysis. 

To illustrate the typical difference between fluids and Lorentz gases, 
we recall that the velocity autocorrelation function (VACF) ~o(t)= 
(vx(0) v~(t)) of a tagged particle in a fluid in thermal equilibrium decays 
algebraically ~ t -~(d~, as was discovered in computer simulations (3'4/ and 
quantitatively explained from kinetic theory (5) and mode coupling 
theory. (6) The exponent c~(d) = d/2 for dimensionality d~> 2 and ~(1) = 2/3 
for d = 1. This long-time tail shows that the coefficient of diffusion D, which 
is given by the long-time limit of D(t) = ~ dt ~o(t), does not exist in fluids 
with dimensionality d~< 2. Similar arguments apply to viscosity and heat 
conductivity, Fluids in two dimensions suffer therefore from the fundamen- 
tal problem that linear transport coefficients do not exist. Lattice gas 
cellular automata exhibit the same difficulties. ~8~ 

A Lorentz gas can be considered as a binary fluid mixture of "heavy" 
and "light" particles. The "heavy" particles are immobile scatterers; the 
"light" particles are moving ballistically with constant speed Ivl = 1, inde- 
pendently of one another. Upon collision with a scatterer, they only change 
their direction of motion. The collision dynamics may follow deterministic 
or stochastic rules. ~9-~) 

Equilibrium time correlation functions have a slightly weaker, but still 
algebraic tail. By a minor extension of the low-density kinetic theory of 
ref. 12 one finds 

q0t(t) = (Qt(0) Ql( t ) )~A l t  -(d/2~-I (H)  

where l =  1, 2, 3 .... labels the spherical harmonics: 

Q1 =v~; Q2 =v~v~ - 6 ~ y d  
(1.2) 

where c~, //,... = x, y ..... d label Cartesian components. The basic dynamics 
causing these long memories are the ring collisions, from which the coef- 
ficients AI can be calculated to lowest order in the density of scatterers. The 
theoretical predictions for exponents agree reasonably well; the coefficients 
At do not agree well with those measured in computer simulations. (9) 
However, in a Lorentz gas with a hopping particle (as opposed to the 
ballistic motion in the previous models) moving on a lattice with excluded 
bonds or sites, there is very good agreement between theory and computer 
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simulations to lowest and next order in the densities in leading and sub- 
leading time tails. (13"14~ The continuous two-dimensional Lorentz gas has a 
well-defined diffusion coefficient, which behaves for small concentration c 
of scatterers as cD(c) = do + dl c In c + -...(157 The In(c) contribution comes 
again from the ring collisions. It was one of the fundamental discoveries 
of Cohen and collaborators (16~ to establish the nonanalytic density 
dependence of transport coefficients in fluids. 

The plan of the paper is as follows. In Section 2 the Liouville equation 
is formulated for several lattice Lorentz gases, and time correlation func- 
tions are introduced; in Section 3 the Boltzmann equation and the self- 
consistent ring equation are solved and the resulting diffusion coefficient is 
compared with computer simulations. We further discuss an exactly soluble 
two-dimensional lattice Lorentz gas. The long-time tails are analyzed using 
the self-consistent ring-kinetic equation in Section 4. The paper concludes 
with a summary of the most interesting results. 

2. L I O U V I L L E  OR C H A P M A N - K O L M O G O R O V  E Q U A T I O N  

Consider a square lattice of N sites, a fraction c of which is occupied 
by scatterers. At the integer-valued time t = 0, 1, 2,... the moving particle is 
at one of the lattice sites and has a "velocity" el = (1 ,0 ) ,  e 2 - - ( 0  , 1), 
e 3 - - ( - 1 ,  0), or e4 = (0, - 1 ) .  To describe the configuration of scatterers, 
we assign a random variable cn to site n = (nx, ny), with value c, = 1 for a 
scattering site and c, = 0 for a nonscattering site. 

Let pi(n, t) denote the probability to find the moving particle at site 
n with (arrival) velocity ei [i  = 1, 2, 3, 4 (rood 4)];  then the Liouville equa- 
tion (deterministic dynamics) or the Chapman-Kolmogorov equation 
(stochastic dynamics) reads 

pi(n + el, t + 1) = (1 -- cn) p,(n, t) + c n ~ Wo.((pn ) pj(n, t) 
J 

=pi(n ,  t) + c, ~ Te(q),)  pj(n, t) (2.1) 
J 

T(cp) = W(~0) - 1 is a 4 x 4 collision matrix, where q~, may be an additional 
site-dependent random or sure variable to specify a type of scatterer. For 
further details about notation we refer to ref. 17. 

There exist many different types of deterministic lattice Lorentz 
models. Gates (18) considered a model with identical gyral scatterers that 
rotate the velocity of the particle over an angle of ~/2. Gunn and 
Ortufio (19) considered a model with three different types of scatterers 
(specified by the random variable ~0,) that rotate the velocity over ~/2, ~, 
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or 3rc/2 rad. Such models show a wealth of percolat ion phenomena.  
Binder (2~ considered an alternating time model where a scatterer rotates the 
velocity over + 7~/2 or - re /2 ,  depending on the parity of time. Here the 
collision matrix T(t)  depends on time. Ruijgrok and Cohen (2) studied the 
mirror model, where the scatterers are fixed mirrors,  oriented parallel to 
n x = ny if q~n = + (fraction f )  and parallel to n x = - n y  if q~n = - (fraction 
1 - f ) .  The matr ix W(~p,) is here 

0 and Wo ( _ ) = 1 
W~ + ) =  0 1 

1 0 

(2.2) 

The authors  considered onty the case f =  1/2, where the diffusion tensor 
is isotropic. Finally, Ernst  et al. (17) studied a stochastic model where 
T =  W -  1 is the same for all scatterers: 

Wu = (2.3) 

with normalizat ion ~ +/~ + 2~ = 1. Here cr /~, and 7 represent, respectively, 
the probabil i ty of transmission (i ~ i), reflection (i -~ i + 2), and deflection 
(i--* i •  1). 

In a compact  nota t ion we represent the condit ional probabil i ty 
P,i.mj(t) with initial value P,i, mj(0)= C5,,, 6~ as a 4N x 4N matrix and write 
the Liouville equat ion as 

e ( t +  1 ) = S  111 + C7"(~0)] P( t )  

= {S-1I-1 + C T ( ~ p ) ] } ' S - 1  (2.4) 

where streaming, density, and collision operators  are defined as 

Sni,  mj = (~ m,n + ei ~ ij 

Cni,  mj : Cn 6rim ~i j  (2.5) 

T.,,,.j( ~p ) = ~.,.  To ( cp.) 

In solving (2.4), we have used Pi(n + ei, 1) = p~(n, 0) or P(1)  = S 1, as the 
specified velocities are arrival velocities. To  obtain the mean probabilities 
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(P( t ) ) ,  one has to average over the distribution of the quenched random 
variables {c,, ~o,}. 

The quantity of main interest is the VACF, ~o(t)= (v~(0)v~(t)), 
which reads in the notation of ref. 17 

~o(t) = ~  (Vx] P,o(t+ 1)IV:,) (2.6) 
n 

The bras and kets denote 4-vectors. An inner product is defined through 
(alb)=�88 which also implies the average ( . . . )  over the 
quenched variables. The velocity vector is defined as I V~)i=(ei)~ or 
I V y ) = ( 1 , 0 , - 1 , 0 )  and IVy)=(0 ,1 ,0 , - -1 ) .  We have also used that 
(P ,m) depends only on (n-m) because of translational invariance. In a 
similar fashion one may consider the tensor correlation function Z(t)= 
(Q(0) Q(t)) with Q = V 2 - V 2, which can be represented as 

Z(t)= Z (V~-  V~I P,o(t+ 1)IV 2 -  V~) (2.7) 
n 

where I V Y - V  2) = (1, - 1 ,  1, -1) .  It is further convenient to introduce 
the discrete Laplace transform of ~p(t): 

~(z)= ~ (1 +z)- '  ~ ~(t) 
t = O  

=~ (Vxl {[(l+z)S-l-CT] 1}.olVx) (2.8) 
t/ 

and similarly for the Laplace transform X(z) of Z(t) in (2.7). Finally, the 
diffusion coefficient is given by 

D = ~  q~(0)+ ~o(t) = qs(0)-~  (2.9) 
t = l  

where ~p(O) = ( Vxl Vx) = 1/2. 

3. BOLTZMANN APPROXIMATION AND RING COLLISIONS 

At low concentration of scatterers one expects intuitively that returns 
of the moving particle to a previously visited scatterer (ring collisions) may 
be neglected and that only uncorrelated collisions have to be taken into 
account (Boltzmann approximation). If this assumption were correct, one 
could replace the average (CTP) on the right-hand side of (2.4) by a 
product of averages, and the equation for the average probability would 

822/57/3-4-3 
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reduce to the standard Chapman-Kolmogorov equation for a uniform 
lattice 

( P(t + 1 ) ) = S -1(1 - A~ P(t) ) (3.1) 

where the Boltzmann collision operator is a 4 x 4 matrix 

a ~  - ( C ) ( T ) =  - c ( T )  (3.2) 

After some rearrangements the Laplace transform (2.8) of the VACF can 
be reduced to 

qO(z )= (Vx l ( z+A ~ l lr~)  (3.3) 

and a similar expression for the tensor correlation function (2.7). Once 
eigenvectors and eigenvalues of A ~ are known, ~0(t) and )~(t) follow 
immediately. 

In the stochastic Lorentz model all scatterers are identical and A~  
- c T =  c ( 1 -  W) with W i n  (2.3). The matrix A ~ has the same cubic sym- 
metric form as (2.3) with c~, /~, and y replaced by c ( = c ( 1 - ~ ) ,  /~'= -ef t ,  
and 7 ' = - e T ,  respectively. One easily verifies that I1), I Vx), IVy), and 
IV 2 -  Vy 2) are eigenvectors (where [1)i = 1 for i--1, 2, 3, 4) with eigen- 
values respectively given by 

2 ~  

it o = 22 ~ = a' - /~ '  = c(1 - ~ +/~) = 2c(/~ + ~) (3.4) 

203 = c~' + fl' - 2~' = 4c~ 

It then follows from (3.3) and (2.9) that the diffusion coefficient D O of the 
stochastic Lorentz model in the Boltzmann approximation is given by 

1 1 1 1 

D~176  4 4e(f l+~)  4 
(3.5) 

By. inserting the Laplace transform (2.8), it follows from (3.3) and (3.4) 
that the time correlation functions in the Boltzmann approximation are 

~o~189 o ,  - 2 1 ) ,  Z~ = (1-23o) ' (3.6) 

If all sites are occupied by scatterers (c = 1), then the stochastic Lorentz 
model reduces to a random walk on a uniform lattice, for which the results 
(3.1)-(3.6) are exact. 

For the deterministic mirror model defined above (2.2), it follows that 
the Boltzmann collision operator is 

A ~  (3.7a) 
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o r  

- 1 f -  1 (3 .7b)  
A ~  f - 1  1 f /  

f 0 - f  1 

In the isotropic case ( f =  1/2), considered by Ruijgrok and Cohen, this 
matrix has the same cubic symmetric form as in the stochastic case with 

= fl = 0 and 7 = 1/2. The eigenvalues are then 2 o = c and 2 o = 2c; the time 
correlation functions are given by (3.6), and the diffusion coefficient 
becomes D ~  1/(2c)-  1/4, as already calculated in ref. 2. In the anisotropic 
case the macroscopic system does not have the full cubic symmetry: it is 
only invariant under reflections in the lines nx = ++_ ny and under inversion, 
but not under discrete rotations. In this case the eigenvectors are 11), 
[Vx + Vy), [Vx - Vy), and ]V 2 -  V 2 ) with eigenvalues respectively given 
by 

2o~ 2~  2e(1 - f ) ;  2~ 2~ (3.8) 

The correlation function g~ still has the same form as in (3.6), but the 
VACF is a tensor 

~ ( z ) =  <v~l (z + A~ -IIve)  (3.9) 

with (c~, fl) = (x, y), which can be brought on to the principal axes by the 
rotation ~ = (x + y ) / , ~  and ~1 = (x - y)/x/2. The resulting VACFs are, for 
t = 0 ,  1, 2,..., 

~o~(t) = �89 [1 - 2c(1 - f ) ] '  

p . . ( t )  = �89 - 2cf)' 
(3.1o) 

and the corresponding anisotropic diffusion coefficients 

D ~ = ( 2 2  ~ ' - - -  

0 = ( 2 2 0 ) - -  1 
D , t  n 

�88 �88 { 1/l-c(1 - f ) - I  - 1 } 

- �88 = � 8 8  1) 
(3.11) 

The anisotropic mirror model has a limit, f ~ 1, or f ~  0, as illustrated in 
Fig. 1, in which the Boltzmann approximation is exact. The reason is that 
returns of the moving particle to the same scatterers are impossible. In the 

direction the particle moves with a constant velocity ~ = ~o + t/x/-2, so 
that the mean square displacement is { ( ~ - 4 o )  2) --t2/2, corresponding to 
a divergent diffusion coefficient D~.  In the t/ direction this deterministic 
Lorentz model shows diffusive behavior, namely ( (q - r /o )  2) _~ 2D, , t  for 
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Figure 1 

long times, where D, ,  = (1 - c)/4c is exact for  all values o f  the concentra- 
tion c. Also, the time correlation functions ~0~ and 7~ are exact. Except 
for ~0e~(t)= 1/2, they decay exponentially for all time. There are no 
algebraic long-time tails. 

The Boltzmann approximation to lattice Lorentz gases does not 
always yield a simple density dependence for the diffusion coefficient as in 
(3.5) or (3.11). In the alternating time model ~2~ summation of the 
uncorrelated collisions yields ~21) 

D O = (2 - 2c + c2)/[4c(1 - c)] (3.12) 

The diffusion coefficient is proportional to the mean free path l o between 
scatterers at low densities (lo ~ l /c)  or between "holes" at high densities 
lo ~ 1/(1 - c) = 1/p. At a low concentration of "holes" and for times much 
shorter than l/p, the particle moves along a "staircase." 

How good is the Boltzmann approximation? To answer this question 
we consider first the computer simulations performed by Ruijgrok and 
Cohen ~2) on the Lorentz model with fixed mirrors. These authors measured 
the density dependence of the diffusion coefficient and found the surprising 
result that the Boltzmann approximation for the diffusion coefficient 
D~ 1 / ( 2c ) - 1 /4  agreed very well with the simulation results at all 
densities. The more extended simulations of Kong and Cohen ~2) show 
appreciable deviations. 

In cellular automaton models for two-dimensional fluids similar good 
agreement between the Boltzmann equation and simulation results was 
found for the viscosities, ~22) not only at low and high (by duality) density, 
but also at intermediate densities, notwithstanding the fundamental 
difficulties in two-dimensional fluids mentioned in the introduction. 

In order to understand these unexpected results, we have used a 
kinetic theory analysis to calculate the contributions from higher order 
correlated collision sequences. To select the most important collision 
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sequence, we have used the methods of Hauge and Cohen (1) to make the 
phase space estimates given in Fig. 2. At small densities the ring-type and 
orbiting collision sequences have the largest phase space. Furthermore, if 
the velocity of the moving particle can be reversed in a collision (back- 
scattering, /~r then the magnitude of the ring-type contributions is 
increased by a factor lie at small densities and becomes of equal size to 
that of the uncorrelated collision sequences, summed by the Boltzmann 
equation (see leftside, Fig. 2). This effect is also present in the hard-rod 
fluid (23) and in a modified version of the Ehrenfest windtree model. (24) 

The actual resummation of relevant ring-type collision sequences and 
the calculation of the diffusion coefficient D(c) for several values of the 
transmission coefficient c~, reflection coefficient/3, and deflection coefficient 
7 [see Eq. (2.3)] can be found in ref. 17. These theoretical results are shown 
in Fig. 3 as solid lines together with the Boltzmann results (dashed lines). 
The results of extensive computer simulations are indicated by their error 
bars. One sees that the simulated values of the diffusion coefficient agree 
well with the Boltzmann values in models without backscattering (/?=0). 

( c t )  k ~ 0 ( 1 )  c ( c t )  k ~ O ( c )  

uncorrelated 

(repeated) ring (y - BS) 

j i i~ ~,llm m 

nested (repeated) ring 
(y-BS) 

 22! 
simple ring (n - BS) 

nested ring(n- BS) 

! 

orbiting 

Figure 2 
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c 
Figure 3 

This is shown in the top curve of Fig. 3 for the model with only left or right 
scattering (7 = 1/2; c~ =/3 = 0), where cD~ = �89 - �88 as in the fixed mirror 
model of Ruijgrok and Cohen. In this case the self-consistent ring equation 
(solid line) and Boltzmann equation (dashed line) coincide. For the 
continuous Lorentz gas, van Leeuwen and Weyland (15/ have shown that 
the ring diagrams and the "special" diagrams (a subset of the nested rings) 
both contribute O(c In c) corrections to the Boltzmann value cD~ In our 
stochastic lattice Lorentz gas with 7 = 1/2 the total contributions from the 
simple ring and from the nested rings cancel exactly. 

In the ease of backscattering (/34=0), the (nested) ring diagrams 
drastically change the low-density behavior of the diffusion coefficient. Also 
here the theoretical calculations are in excellent agreement with the results 
of computer calculations, as shown in the two lower solid curves of Fig. 3. 
The dashed curves show that the Boltzmann equation gives completely 
incorrect results, even at the lowest densities. 

4. LONG-TIME TAILS 

In view of the success of the self-consistent ring summation for deter- 
mining the density dependence of the diffusion coefficient, particularly in 
cases where the Boltzmann equation fails totally, we use the same theory 
to calculate long-time tails of correlation functions. There are again sur- 
prises: in the continuous Lorentz gas the coefficient of the tail in the VACF 
to lowest order in the density is exclusively determined by the simple ring 
collisions; in lattice gas models this coefficient is determined by the nested 
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rings even in cases without backscattering where the diffusion coefficient is 
still correctly given by its Boltzmann value as c ~ 0. Furthermore, in the 
tensor correlation function X(t) in (2.7) even the exponent is different from 
the corresponding tensor correlation function (1.2), ~02(t)~ t -3 in the con- 
tinuous case. 

The derivation will be given for the stochastic Lorentz model, but can 
be adapted trivially to the fixed mirror model. The basic method is given 
in ref. 17. Here we only present an outline. We start from the VACF in 
(2.8) by replacing the site-dependent collision operator CT, containing the 
fluctuating densities c,, by an effective site-independent collision operator 
cT~(z), where 

6Tn = cn T -  cTe(z) ~ c n T+ A(z) (4. l) 

The effective collision operator represents the contributions from collision 
sequences that we want to resum; e.g., setting Te(z )=T  sums all 
uncorrelated collision sequences. To determine Te(z), we expand the exact 
resolvent F ( z ) = ( [ ( I + z ) S - I - C T ]  1) in (2.8) around the effective 
resolvent 

G(z)= [(1 + z ) S -  1 +A(z) ]  1 (4.2) 

require that all remaining ring-type contributions to F(z) vanish identi- 
cally, and neglect all remaining non-ring-type contributions. This imposes 
the self-consistency or effective medium condition: 

(6T~/(1 - R 6T.) ) = 0 (4.3) 

Hence F(z) ~- G(z) in the effective medium approximation. The 4 x 4 matrix 
R(z) represents the ring integral 

R(z) =- Goo(Z) = fq [-(1 + z)e iqV- 1 + A(z)] -1 (4.4) 

and ~q denotes an average over the first Brillouin zone 

. . . .  (2~) 2 dqx dqy. . .  
- - T o  - -  7~  

The ring integral R(z)= G,,(z)= Goo(Z) is the Laplace transform of the 
single-site Green's function or "staying probability" (Pn, ( t ) )= (Poo(t)) in 
the self-consistent ring approximation. On the square lattice the moving 
particle can only be at its starting position after an even number of time 
steps. This implies P0o(/)=0 for odd times, or equivalently, R(z)=  
R ( - 2 - z ) ,  as can be seen from (4.4) by replacing q~(e=x, y) by q'~= 
q~+ ~. These oscillations persist forever. We have further changed to 
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Fourier representation, and V~ is a diagonal matrix with elements (V~) u = 
6o(ej)~. Also note the relation IVy)--  Vail ) between the kets introduced 
in (3.4), 

In our further analysis it is convenient to write out explicitly the 
average over c, in (4.3). Using (4,1), this yields for the self-consistency 
condition (4.3) 

c(T+ A) ( 1 - c ) A  
- -  = 0 ( 4 . 5 )  

1 - R ( T + A )  1 - R A  

where all matrices A(z), R(z), and T have the cubic symmetric form (2.3) 
and therefore commute. Its simultaneous set of eigenvectors is 

[~0o) = 11 ); I~',) = 2 ~/2 IV,)  
(4.6) 

1O2> =21/2 IG>; I~>--Iv2- v~> 

with (Ot] Or') = 6,, (l, l ' - :  0, 1, 2, 3). The corresponding eigenvalues are 
denoted by 2l(z), rz(z), and ti, respectively, where the eigenvalues for l =  1 
and l =  2 are degenerate. Since T [ 1 ) = 0  or to = 0, Eq. (4.5) implies that 
2o(Z) = 0. The corresponding spectral representation of the matrices is 

3 
A(z) = ~ 1 ~ )  2,(z) (~,,1, etc. (4.7) 

~=o 

The combined equations (4.4) and (4.5) determine the matrix A(z) or 
equivalently the eigenvalues 2t(z) for l =  1, 2, 3. Once they are known, the 
VACF (2.8) is given by the direct analog of (3.3), i.e., 

( / , (z ) :<Vxl  [z+A(z)] -ljVx>=�89 i (4.8) 

and similarly for the tensor correlation function Z(t) in (2.7), i.e., 

X(z) = ]-z + 23(z)] 1 (4,9) 

To determine the long-time tails we need the dominant small-z singularity 
of R(z). We use in general the convention that 6A(z) denotes (the term 
containing) the dominant small-z singularity of A(z), and A = A(0) denotes 
the dominant regular part. There are two sources of singular terms in (4.4): 
The effective collision operator has a singular contribution 3A(z) and the 
ring integral with A(z) replaced by A = A ( 0 )  has the standard ring 
singularity of O(z In z). This yields 

(~R(z)=(~ ~q [(1-+-z)eiqV-l q-A] 1-fqgC~A(z)g (4.10) 
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where g =  [exp ( iqV) -1  + A] -~. The small-z singularity of the first term 
on the rhs is obtained in essentially the same way as in ref. 12; i.e., we 
determine the diffusive eigenmode 

[ ( l + z )  e i q v - l + A ]  tg to (q ) )=[z+co(q , z ) ]  [~D(q)) (4.11) 

for small q and z, where co(q , z )~Dq 2 with D = ( 2 2 ~ ) - 1 - 1 / 4  and 
gtD(q) ~- 1 - iqV/21 + . . . .  We then obtain for the eigenvalue of (4.10) 

3 

5rl(z) = (~zl (SR(z)IOl) = 5 , ( z ) -  ~ Al,, 62z,(z) (4.12) 
l ' = 1  

In the last term we have used the spectral representation (4.7) for 5A(z) 
and introduced 

All' -"~- fq 

The first term is, for small z, 

((0,]  g 1~,,))2_ fq g~, (4.13) 

5,(z) = 5 fq ((OlJ ~o(q)))2/( z + Dq 2) 

= ~" -r~(4rc21D) 2 z In z, l =  1, 2 

[O(z:  In z), l = 3 
(4.14) 

Equation (4.12) gives a linear relation between 6r and 62. A second relation 
can be obtained by applying (4.5) to the eigenvectors (4.6), which yields 
r(z) = [2(z) + ct]/{2(z)[2(z) + t] } for l =  1, 2, 3. The leading singularities 
are therefore related by 

6r(z) 22 + 2ct2 + ct 2 
fi2(z) )~ + t) 2 

- -- or (4.15) 

for 2t, rt, tt, and c~ t = et(2t) with l =  1, 2, 3. All coefficients on the rhs are 
taken at z = 0. With the help of this relation, 6rt(z) can be eliminated from 
(4.12) to yield two coupled linear equations for 621(z)= 622(z ) and 623(z). 
We note two interesting points: first, since A13 in (4.12) is in general non- 
vanishing, one sees that 62t(z) = -61(z)at  (with l =  1, 3), where al follows 
from these linear equations. This leads to t -2 tails in the time correlation 
functions (4.3) and (4.9), whereas the (not self-consistent) simple ring 
integral--given by the first term on the rhs of (4.10) and (4.12)--would 
yield ~0(t) ,-~ t -2 and )~(t) ~ t -3 as in (1.2). Second, even in the limit of small 
density, the coupling constant A13 between the two equations does not 
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vanish, but remains of the same order in density as el "" ~2 ~ 1/c and both 
tails survive. 

Having determined the 62~(z), we determine the dominant small-z 
singularity in the VACF (4.8) as 6~(z )=-621(z ) /222=(a1 /22~)61(z ) .  
According to a Tauberian theorem, z In z at small z corresponds to l i t  2 at 
large t. Hence, the long-time tail in the VACF is 

~(t) -~ - (a~/222) n(4n2t Dt)  2 _ Ec ~t-2 (4.16) 

Similarly, we find for the tail in the correlation function in (4.9) 

Z(t) = - (a3 / .~3  2) rc(4n21 Dt)  2 _ F c - l t -  2 (4.17) 

Analytic results can be obtained in the low-density limit, as shown for the 
eigenvalues 2~ and the diffusion coefficient in ref. 17. Using similar methods, 
we have also evaluated the dominant low-density behavior of Azz, analyti- 
cally: 

A 11 = 1(3~3/22~)1/2 

A13 = _ 1(22123) -1/2 
(4.18) 

A33 = �89 1/2 

A12 = (1/8~)(23/21) 

The first three terms are of 0 ( t / c ) ,  since )L t = O(c); the last one is of O(1) 
and may be neglected. At high densities (p = 1 - c - ,  0) all integrals remain 
finite, except for the special case with left or right scattering (7 = 1/2). Here 
A33 = (2~P) -1 and A13 = ~ - 1  In p, whereas All and A12 are finite. 

For  finite densities we have numerically evaluated all integrals A u, in 
(4.13) and calculated E and F, defined in (4.17). The eigenvalues )~1 and 23 
and the diffusion coefficient were obtained numerically in ref. 17. In Fig. 4 
the coefficients E and F are plotted as a function of the density for the 
stochastic models with only left or right scattering (7 = 1/2, e =/~ = 0) and 
for two models with backscattering ( c ~ = / / = 7 = 1 / 4 )  and ( / / = 7 = 1 / 3 ;  

= 0). At high densities the tails vanish: because e~ ~ O(1/p)  in (4.15), one 
can. verify directly from (4.12) that the tail amplitudes behave as 
E ~ a l  ~ O ( p )  and F ~ a  3 ~ O ( p  2) for small p = l - c .  The stochastic 
Lorentz model for c = 1 represents a random walk for which the exponen- 
tial forms (3.6) are exact. The high-density results do not apply to the 
mirror model, for which the relations (4.5) and (4.15) are very different. 

In the low-density limit we find for the tails of the time correlation 
functions 

~o( t ) ~_ - K (  8 ~ e t ~  ) - 1  
(4.19) 

X(t) ~- + L(87wt2) -~ 
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Figure 4 

where 

K =  [ 1  - � 8 8  - ( 3 / 8 ) ( 2 b j b 3 )  1/2] 

L = b ~ / [ ( 2 b l  b 3 )  ~/2 - (3/4) bl b3 ] 
(4.20) 

with 2z =- c b  t and we have used the low-density relation 221D = 1. Only in 
cases without backscattering (fl = 0) do the eigenvalues 2t for l =  1, 2, 3 
approach the corresponding Boltzmann values 2 o given in (3.4). In cases 
with backscattering (fl ~ 0 )  the eigenvalues approach very different low- 
density limits, which have been calculated in ref. 17, and are listed 
in Table I for the backscattering models ( 7 = f l = 1 / 3 ;  c~=0) and 
(7 = fi = c~ = 1/4) together with the numerical values for the coefficients K 
and L. If we would have calculated the tail of the VACF at low densities 

Table I. Coefficients in ( 4 . 2 0 )  

b I = 21/C b 3 = 23/C K L 

7 = 1 / 2  1 2 2 2 
2 = f l  = 1/3 4/,,/'5 4 ( 2 / x / ' 5 - 1  ) 1.58 8.62 

7 = f l = ~ =  1/4 4/3 2/3 4/3 8/3 



470 Ernst and van Velzen 

in the standard fashion from the ring collision integral R~ in (4.4) with 
A(z) replaced by the Boltzmann value A ~ in (3.2), then we would have 
obtained the result (4.19) with K = I .  Note that ref. 12 yields for the 
continuous two-dimensional Lorentz gas (vx(0) Vx(t)) ~- (8~nt 2) - 1, where 
n is the number density of scatterers. 

To conclude, we summarize the most important points about time 
correlation functions and the diffusion coefficient in lattice Lorentz gas 
models. 

(i) For the mirror model, defined in Fig. 1, the BoItzmann 
approximation is exact for all density of scatterers c; time correlation 
functions decay exponentially for all times. 

(ii) For the stochastic Lorentz models, defined in (2.1) and (2.3), 
with backscattering (/~ r  the diffusion coefficient at low densities is not 
given by the Boltzmann equation (see Fig. 3). This illustrates the subtle 
limits involved in interchanging the limit c ~ 0 with the integration over 
wave vectors in calculating the eigenvalues of the ring matrix R(z) in (4.4). 

(iii) The inclusion of nested ring diagrams in models with and 
without backscattering in a self-consistent manner substantially increases the 
tail amplitude of the VACF from a value K =  1 for the (not self-consistent) 
simple ring collisions to a renormalized low-density value K = 2 in the left- 
right scattering model (7 = 1/2); K-~ 1.58 in the model (/~ =V = 1/3; c~ =0)  
and to K =  4/3 in the isotropic scattering model (~ =/~ = 7 = 1/4). With the 
help of the present method, similar results can be obtained for the tails in 
the fixed mirror model of Ruijgrok and Cohen. 

(iv) In the continuous Lorentz gas the tail coefficient of the VACF 
at low densities, as obtained from computer simulations, ~ is about 
K s i  m "~ 1.5-2, compared to the ring value K =  1 in ref. 12. It is therefore of 
interest to perform a similar self-consistent analysis of nested ring diagrams 
for the continuous Lorentz gas to try to resolve this 15-year-old 
controversy between K values obtained from simulations (9) and low-density 
kinetic theory. (12) 

(v) These ideas can also be tested by performing computer simula- 
tions of the tensor correlation function ~o2(t)= (vx(O)vy(O)Vx(t)vy(t)) for 
the continuous Lorentz gas. The present analysis suggests the possibility 
that ~o2(t ) would have a (positive) long-time tail ,,~t 2 instead of t 3 as 
(1.2), with an amplitude of about the same magnitude as in the (negative) 
tail of the VACF. Of course, the t -3 tail is still present and may be 
dominant at intermediate times. 

(vi) On square lattices time correlation functions, f(t) ,  may contain 
an oscillatory component of period 1, that persists forever [21]. Our 
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asymptotic results for long time tails refer only to the coarse grained 
time dependence, f(t). For the present case one may take f ( t ) =  
[f(t) +f( t  + 1 )3/2. 
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